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Abstract: This paper examines how gaseous discharge affects molecular clouds and how that 

affects star formation. In the magnetic field of the star, electrons, positrons, and ions interact to 

form the majority of the plasma's chemical makeup. The ZK equations are used for the study of 

gaseous discharge effects in the presence of shocks and solitons. According to the study, 

shockwaves produced by gaseous discharge are crucial in creating molecular clouds, which in 

turn affect the evolution of stars. Within molecular clouds, denser regions develop as a result of 

the compression of the interstellar medium caused by shockwaves. The gravitational collapse of 

these squeezed regions promotes the creation of protostellar cores and starts the star-formation 

process as a result. Shockwaves also affect the motion and turbulence of molecular clouds and 

improve the amplification of magnetic fields. Clarifying the basic principles regulating star 

formation and the ensuing creation of stellar populations inside galaxies requires an 

understanding of the complex interplay between shockwaves and molecular clouds. 
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1. Introduction 

Astronomers and physicists have been enthralled by the study of the early cosmos for 

centuries because it provides a path to comprehending the unfathomable beginnings of our 

cosmic environment. The complicated interplay of plasma, shockwaves, accretion, and stellar 

birth sits at the center of this astonishing drama. The early cosmos was a plasma soup that was 
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incredibly hot, thick, and full of energetic particles and radiation when it was first created. The 

fundamental forces of nature controlled the interactions between particles at this time, which was 

crucial in creating the universe as we know it today. The plasma experienced a change as the 

universe cooled and expanded. Plasma streams, lengthy filaments that span immense cosmic 

distances, finally emerged as a result of subtle variations in its density and temperature [1]. A 

crucial stage in the cosmic symphony of birth and expansion, these cosmic highways of plasma 

served as the gravitational foundation upon which galaxies and galaxy clusters would eventually 

come together. These plasma streams gave birth to shockwaves. These massive perturbations 

moulded the structure of the universe on a vast scale, driven by a variety of cosmic occurrences 

like supernovae and galaxy collisions [2, 3]. Shockwaves caused gravitational collapse as they 

moved through the plasma, which prompted the formation of matter in denser areas [4, 5]. The 

accretion process served as the incubator for protostar formation. Gravity brought enormous 

amounts of matter together during the cosmic dance of accretion, moulding it into dense cores 

within the plasma streams. Future stars' embryonic forms emerged within these cores, propelled 

by the gravitational potential energy released during the collapse. Early on, the protostar 

developed into a source of radiant energy, illuminating its surrounds with a comforting glow. The 

interaction of gravity, matter, and energy created the conditions for the star formation [6, 7].  In 

this paper we delve deeper into the evolutionary processes involved, examining the mechanisms 

driving the formation of plasma streams, the impact of shockwaves on accretion, and the 

transformative journey from protostar to fully fledged star. Through comprehensive analysis of 

theoretical models, observational data and computational simulation, we aim to shed light on the 

remarkable phenomenon of stellar birth and it’s implications for understanding our universe  

In section II, shock waves and their characteristics are described followed by the role of 

Shock Waves in section III. Section IV contains Mathematical Derivation & Numerical 

Simulation. Results and Discussion are in section V. The section VI mentions the Future 

Direction and conclusion is in section VII.   

 

2. Shockwaves and Their Characteristics  

A shockwave is a discontinuity that moves across a medium and causes a quick alteration 

in its physical characteristics. Based on their features, shockwaves can be divided into a number 

of categories, including regular shocks, oblique shocks, and bow shocks. Shockwaves of different 

types behave differently and have different effects on their surroundings [8]. Several astronomical 

phenomena, including supernova explosions, stellar winds from huge stars, and interactions 

between galaxies, can produce shockwaves. Extreme energy is released during these occurrences, 

which causes shockwaves to form and travel through the interstellar medium. The density, 

temperature, and composition of the medium are all factors that affect how shockwaves spread 

[9, 10].  
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The gas and dust in the immediate area are compressed and heated as shockwaves hit 

the interstellar medium. The birthplace of stars, molecular clouds, may collapse as a result of 

this compression. Furthermore, shockwaves cause turbulence in the interstellar medium, which 

improves the disintegration of molecular clouds and encourages the creation of many protostellar 

centres [11]. The rate and effectiveness of star formation are greatly influenced by the interaction 

of shockwaves with the interstellar medium.  

 

3. Role of Shockwaves in Star Formation  

3.1 Triggering of Star Formation by Shockwaves  

By compressing the surrounding interstellar medium, shockwaves play a critical part in 

starting the birth of new stars. The gas and dust are compressed and get denser as a shockwave 

moves across the interstellar medium [12]. The compression causes the gravitational instability 

in the medium to increase, which causes the star forming molecular clouds to collapse. The 

creation of protostellar cores can begin when shock wave induced compression overcomes the 

thermal and magnetic support that usually prevents collapse [13]. Through the accretion of 

surrounding material, these cores then develop into protostars.  

 

3.2 Shockwave Compression and the Collapse of Molecular Clouds  

Compressing molecular clouds, which are the locations where stars develop, is one of 

shock waves' primary effects on star formation. The material of the cloud is more likely to 

collapse gravitationally due to the compression brought on by shockwaves, which also increases 

the density and pressure inside the cloud [14]. The stronger self-gravity produced by the higher 

density allows the cloud to defeat the thermal and magnetic pressure support. As a result, the 

cloud disintegrates more quickly, giving rise to protostellar centres and denser clumps. Smaller 

structures develop inside larger ones as the collapse proceeds hierarchically, eventually leading 

to the birth of individual stars.  

 

3.3 Shockwave-Induced Turbulence and Fragmentation  

The interstellar medium becomes turbulent as a result of shockwaves, and this 

turbulence significantly contributes to the breakup of molecular clouds [15]. Shockwaves cause 

velocity changes as they travel through the cloud, which causes the gas to move in tumultuous 

fashion. The molecular cloud begins to form clumps, filaments, and other structures as a result 

of the density changes caused by this turbulence. As a result of gravitational collapse, these 

compact formations are prone to shatter into protostellar cores [16, 17]. As a result, shockwave-

induced turbulence encourages star fragmentation, leading to a clustered phase of star formation 

in which numerous stars develop near to one another.  
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3.4 Shockwaves as Stellar Feedback Mechanisms  

The energy that stars produce is eventually released in the form of stellar winds, 

radiation, and supernova explosions. Shockwaves produced by these energetic processes may 

radiate outward from newly generated stars [18]. The rate and effectiveness of ongoing star 

formation are impacted by interactions between these feedback-driven shockwaves and the 

interstellar medium around them. On the one hand, these shockwaves have the potential to 

compress neighbouring molecular clouds, leading to the birth of brand-new stars [19]. However, 

they can also scatter and disturb already-existing molecular clouds, preventing or impeding the 

birth of new stars. The interaction between shockwaves and stellar feedback mechanisms 

influences the distribution and population of stars in galaxies as well as the dynamics of star-

forming areas as a whole.  

Understanding how shockwaves affect star formation helps us better grasp the systems 

and procedures that control how stars are created and evolve [20]. Shockwaves play a major role 

in the intricate and dynamic nature of star formation, from causing molecular clouds to collapse 

to fostering turbulence and fragmentation. Additionally, the interaction between shockwaves and 

stellar feedback has effects on both the general evolution of galaxies as well as specific star 

formation events [21]. We can understand the complex connection between shockwaves and 

star formation by investigating these interactions through observational investigations and 

numerical simulations, giving information on the fundamental processes that create our universe.  

 

4. Mathematical Model  

In plasma physics, the hydrodynamic model is a fundamental approach used to study 

the behaviour of plasmas on macroscopic scales. This model treats the plasma as a fluid with 

properties such as density, velocity, pressure, and temperature, allowing researchers to analyse 

its collective behaviour. The hydrodynamic equations, known as the fluid equations, are derived 

from the conservation laws of mass, momentum, and energy, along with Maxwell's equations 

governing the electromagnetic fields within the plasma. These equations form a set of coupled 

partial differential equations that describe the evolution of plasma parameters over time and 

space. 

One of the key assumptions of the hydrodynamic model is that the characteristic length 

and time scales of the plasma phenomena of interest are much larger than the mean free path 

and collision time of individual particles. This allows for the description of plasma dynamics in 

terms of smooth fluid quantities rather than individual particle trajectories. The hydrodynamic 

model has been successfully applied to study various plasma phenomena, including the 

propagation of shock waves, instabilities, turbulence, and magnetic reconnection. It provides 

insights into the behaviour of plasmas in laboratory experiments, astrophysical environments, 

and fusion research. However, it's essential to note that the hydrodynamic model has its 

limitations, particularly when dealing with strongly collisional or non-equilibrium plasmas where 
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kinetic effects become significant. In such cases, more sophisticated kinetic models are required 

for accurate description and prediction of plasma behaviour. 

 

4.1 Governing Equations  

The propagation of dust acoustic waves in a collisionless, unmagnetized warm dusty 

plasma made up of electrons, two-temperature ions, and highly negatively charged dust grains is 

investigated [22]. At equilibrium, total charge neutrality necessitates that  

0e 0 d 0 d 0ic 0ihn n Z n n+ = +
     (1) 

where n0e, n0d, n0il and n0ih are the equilibrium values of electrons, dust, lower temperature 

ions and higher temperature ion number densities respectively. Z0d is the unperturbed number 

of charges on the dust particles. The following set of normalized two-dimensional equations of   

0e 0 d 0 d 0ic 0ihn n Z n n+ = +
      (2) 

d d d d d d
d d d d

d

u u u u P
u w Z

t x y z x n x




    
+ + + = −

          (3) 

d d d d d d
d d d d

d

v v v v P
u v w Z

t x y z y n y

    
+ + + = −

          (4) 

d d d d d d
d d d d

d

w w w w P
u v w Z

t x y z y n y

    
+ + + = −

           (5) 

d d d d d d
d d d d3dp p P P u v w

u v w P
t x y z x y z

       
+ + + = − + + 

             (6) 
2 2 2

d d ic ih2 2 2 eZ n n n n
x y z

    
+ + = + − −

         (7) 

ud, vd and wd are velocity components of the dust particles in x, y and z-directions and are 

normalized by the effective dust acoustic speed d 0 d eff d/C Z T m=
.  Pd and  are the pressure of the 

dust particles and electrostatic potential respectively and they are normalized by d 0 d dZ n T
  and

eff /T e , respectively. Here, 

1

eff 0 0ic 0ih

0 d 0 d e il ih

eT n n n

Z n T T T

−

 
= + + 
  is the effective temperature where d e i1 ih, , ,T T T T

are 

the temperature of dust, electron and low-temperature and high-temperature ions. dn
and dZ

are the dust number density and the variable charge number of dust grains and they are 

normalized by 0  dn
 and 0 dZ

, respectively. The time and space variables are normalized by the 

dust plasma period 
1 2 2

pd d 0 d 0 d/ 4m n Z e − =
 and the Debye length 

2

D eff 0 d 0 d/ 4U T Z n e=
, 

respectively. Electrons and ions are assumed to be distributed with nonthermal and Maxwell-
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Boltzmann distribution functions, respectively. So the related dimensionless number densities 

for electrons ( )en , low-temperature ions ( )iln  and high-temperature ions ( )ihn  are 

( )2

e 1 2 11 expen C C s    =  − +       (8) 

ic exp( )ien s=  −        (9) 

ih exp( )ihn s =  −        (10) 

where, 1 2

1

1
e

 
 =

+ −        (11) 

1

1 2 1
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+ −  
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T
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
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= =
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1T
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T
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+ −
= =

+ + ,
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1

0e

n

n
 =

,
0ih

2

0e

n

n
 =

,
d

eff

T

T
 =

, 

where the non-thermal parameter   determines the number of non-thermal fast 

electrons. 

 

4.2 Derivation of ZK equation  

In order to derive the evolutionary equation in this case which becomes as a Zakharov-

Kuznetsov (ZK) equation we use the standard reductive perturbation technique (RPT). The 

reductive perturbation technique is a powerful mathematical method used to simplify and analyse 

nonlinear wave equations. It involves assuming a small parameter, typically representing the ratio 

of wave amplitude to wavelength, which allows for the expansion of equations into series. 

Through this approach, the complicated nonlinear equations can be approximated by simpler, 

linear ones, focusing on the dominant effects. This technique is widely applied in various fields, 

including plasma physics, fluid dynamics, and nonlinear optics, providing valuable insights into 

the behaviour of waves in complex systems and facilitating the understanding of phenomena such 

as solitons and wave interactions. For this we employ stretching of variables and perturbation 

expansion as given below. 

a) Stretching Variables 

2 2 3

0
, , ,

( )

x dx
t y z t

U x
   

 
= − = = = 

 
ò ò ò ò

     

 (11) 

b) Perturbation series 
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 
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c) The Zakharov-Kuznetsov (ZK) equation 

With proper algebraic manipulation and employing boundary conditions we obtained 

the ZK equation given as 

3 2 2

1 1 1 1 1
1 3 2 2

0A B C
    


     

       
+ + + + =   

              (13) 

Here
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2
2

1 22 2 2 2
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1 2 1

11 9
2 3 2 3 3

2 3
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A U U

U U
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2
21
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2

B U
U
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U
C =

 

The Zakharov-Kuznetsov equation is a nonlinear partial differential equation that 

describes the evolution of weakly nonlinear ion-acoustic waves in a plasma with non-uniformity 

in both space and time. It incorporates effects such as dispersion, nonlinearity, and dissipation, 

making it relevant in plasma physics and nonlinear optics. Formulated by Zakharov and 

Kuznetsov, this equation provides insights into wave dynamics, including soliton formation and 

propagation, in non-uniform plasma environments. Its study aids in understanding complex 

plasma behaviours and has practical applications in diverse fields such as controlled fusion, 

plasma diagnostics, and the development of advanced communication systems. For a better 

understanding of the subject the readers can refer to the following works on linerar and nonlinear 

phenomena in space plasma physics [23-57]. 

 

5. Results and Discussions  

 Figure 1 & 2 represents the Electric Field Potential of the plasma. The electric field 

plasma follows a continuous pattern of lower and higher potential in the beginning stage (Figure. 

1) which is being distorted later (Figure. 2) as 

perturbations are introduced. In figures 3 & 4, the brown 

surface shows an isosurface of higher Electric field whereas 

the blue surface is a representation of lower 

Electric field. However, the perturbation distorts the 

isosurface which can also be seen in figures 5 & 6, as the 

Electric Field lines mess up their path with the passage of 

time because of introduction of perturbations. This 

distortion in electric field affects the magnetic field 

which further plays role in star formation in two ways [23]. 
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Figure 1. Electric field potential at time t=0.001 

Figure 2. Electric field potential at time t=20 

Figure 3. Isosurface of Electric Field at time=5 
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Figure 4. Isosurface of Electric Field at time=20 

Figure 5 Representation of Electric Field Lines before 

perturbation 
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a) Magnetic fields immediately inhibit turbulence's capacity to collect gas into gravitationally 

unstable clumps by preventing turbulent compression and pressure that defies gravity. This 

lowers the star formation rate.  

b) Magnetic fields also play a critical indirect role by providing the means for forming stars to 

launch jets and outflows. By ejecting gas that would otherwise accrete onto stars and by 

promoting fragmentation, outflows reduce the mean stellar mass on tiny scales.  

 

6. Conclusion 

 This paper has examined the impact of shockwaves on the star-forming process. We 

have obtained important insights into the intricate processes involved by examining shockwave 

features, their interactions with the interstellar medium, and their function in initiating and 

directing star formation. The enormous impact of shockwaves on star formation and their 

broader implications for galaxy evolution are supported by computational models. Our 

knowledge of star formation and its position within the broader context of astrophysics will 

increase as a result of additional research in this area. 
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