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Abstract: The oxidative degradation of cold atmospheric pressure plasma assisted degradation 

of malachite Green (MG) was investigated in this study. Cold atmospheric pressure plasma 

assisted MG degradation process was carried out as a function various plasma treatment time 

(05, 10, and 15 mins). The % of degradation and presence carbon content in the plasma treated 

MG was examined by UV-Visible spectroscopy (UV-Vis) and total organic carbon (TOC) 

analyzer. Optical emission spectrometer was used to identify formation of various reactive species 

during in situ plasma treatment. The higher degradation percentage of 90% was obtained after 

plasma treatment time of 15 min and value of TOC also found to decreased significantly with 

increasing plasma treatment time.  Toxicity of the plasma-treated MG aqueous solution samples 

was also examined by Staphylococcus aureus (S.aureus) bacteria. 

Keywords:  Cold atmospheric pressure plasma jet, Malachite Green (MG), Optical Emission 

spectrum, TOC 

 

1. Introduction 

Water is considered as the elixir of all living organisms and water consumption is 

increased day-by-day because of increase in the population.  Water is most important in our life, 

however the living organisms needed fresh water quantity and quality are insufficient [1]. Indeed, 

only a few amounts of (2.5%) freshwater is available for domestic and agriculture usage. With the 

rapid growth of industrialization, the amount of water consumption is increased. Therefore, the 

amount of wastewater is increased yearly more than six times of freshwater. Furthermore, textile, 
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leather, plastic, paper and cosmetic industries has consumed large quantity of freshwater which 

depends on their requirements [2]. Textile industries are one of the largest sectors in water 

consumption compared to the others sectors because it consumed a very large amount of fresh 

water about 25 to 250 m
3

 per ton, which depends on their process [3]. Moreover, textile industries 

are using major classes of synthetic colorants such as azo, anthraquinone and reactive dyes.  

Those dyes are difficult to degrade, which is stable in aerobic and anaerobic conditions. About, 

10-15% dyes containing wastewater are directly disposed into the environment after the dyeing 

process. The disposed dye wastewater is directly mixed with water resources like rivers, ponds, 

and streams, etc. Thus, the textile effluent creates a major impact on environmental pollution 

issues. Therefore, wastewater treatment should be a major concern for researchers and scientists. 

Moreover, the elimination of pollutants from the wastewater can be involved in several methods 

such as ultrafiltration, coagulation, membrane separation and biological methods.  Conventional 

treatment methods are not suitable in those dyes because of dye intermediates and harmful by-

products are produced after the treatment. Hopeful results and higher removal rate have been 

achieved using advanced oxidation process (AOPs) [4-5].  AOPs process is based on the in-situ 

generation of  various reactive nitrogen (RNS)  and oxygen species (ROS) such as  hydroxyl 

radicals (OH●), singlet oxygen (O), nitrogen (N), nitrate (NO
3-

) , nitrite (NO
2-

), ozone (O3),  

hydrogen peroxide (H2O2), Those, radicals are facilitated to degrade  the organic molecules in 

the effluents. In this context, the cold atmospheric pressure plasma process is one of the AOPs, 

which leads to chemical and physical effects in a liquid phase by generation of various reactive 

oxygen and nitrogen species (ROS and RNS).  [5-7]. Malachite Green (MG) dyes represent the 

most important class of dyes in textile, paper and acrylic industries. This manuscript studies the 

degradation of MG using cold atmospheric pressure plasma jet under various plasma parameters. 

After the plasma treatment the physical and chemical change of MG aqueous solution was 

studied using UV-Visible spectrometer (UV-Vis), and total organic carbon (TOC) analyzer. 

During the MG degradation various ROS and RNS reactive species formation were identified 

using an optical emission spectrometer (OES). Toxicity nature of before and after plasma treated 

MG aqueous solution was examined by antibacterial activity using against Staphylococcus aurous 

(S.aurous) bacteria. 

2.0 Materials & Methods 

2.1 Material 

 Malachite Green (MG) dye was obtained from the textile industry from Tirupur, India. 

The nutrient ager and nutrient broth were purchased from HiMedia. The bacterial cultural plates 

purchased from the Bioline laboratory, Coimbatore, India. The plasma forming gas Argon was 

supplied from Jayam SPL Gases, Coimbatore, India. All the required solutions were prepared 

to double Deionized (DI) water. 
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2.2 Cold Atmospheric pressure plasma jet  

 The detail description of cold atmospheric pressure plasma rector has reported in our 

previous publications [8-9]. Cold atmospheric pressure plasma jet consists of a rod and ring-type 

electrodes made of copper, which is shown in figure-1. The rod type electrode was acting as a 

live electrode and ring-type was acting as a ground electrode. Furthermore, the two electrodes 

were covered by a quartz tube to avoid arc formation. The distance between the two electrodes 

was approximately 2.2 cm. In addition, the whole setup was covered by Teflon enclosure, in 

order to prevent electric induction (Figure-1). The cold atmospheric pressure plasma was 

generated by a high voltage (40 kV) and high frequency (30 kHz) power supply. The noble gas 

like argon was used as a plasma forming gas. The degradation process was carried out at various 

treatment time of 5, 10 and 15 mins with a fixed applied potential of 32 kV and argon gas flow 

rate of 9 lpm. 

2.3 Analytical analysis of plasma-treated samples  

The plasma-treated MG aqueous solution was analysed by various analytical methods. 

The plasma-treated MG aqueous solution percentage of degradation was observed using a UV-

Visible spectrometer (Ocean Optics HR4000). Plasma treated MG aqueous solution carbon 

content was analysed using total organic carbon (TOC) analyser (SHIMADZU (TOC/L 

CPH/CSN).  The toxicity of plasma treated MG aqueous solution was examined by Agar Well 

Diffusion Method against Staphylococcus aureus (Gram Positive Cocci). 

3.0 Results and Discussion  

3.1 Measurement of relative intensities of plasma species  

It is important to investigate what are the reactive species involved in degradation of MG 

molecules in aqueous solution was examined by OES.  Figure-2 clearly shows the emission 

spectrum of argon plasma before and plasma during the degradation processes. It was observed 

that the OES spectra of Ar plasma exhibited strong intense peaks in the range of 690-900 nm 

due to presence of various excited states of argon atoms [8-9]. In spite of Ar emission line, we 

have found additional peaks due to hydroxyl radicals (309 nm), nitrogen second positive system 

(334, 354 and 376 nm) and the atomic oxygen species (772 and 842 nm) (Figure-2a) [9-10] due 

to interaction of plasma species with nitrogen and oxygen content in the surrounding atmosphere 

[8-10]. In contrast, the OES spectra of Ar plasma during the processes exhibited various new 

peaks at 656, 486 and 430 nm due to Hα, Hβ, and Hγ (Ballmer series H spectral lines) and 206 

and 236 nm due to NO lines (Figure-2b) [9-11].  Moreover, the intensity of the peak due to OH● 

and N2  SPS was found to be increased than the spectral line of Ar plasma jet alone, may be 

attributed to the formation of higher concentration of OH● radicals during the processes. The 

increase in N2 SPS may be attributed to dissociation and excitation of dye molecules in the 

aqueous solution.  Moreover, there was no significant variation in intensity of the Ar spectral line 

during the processes.  The generation of OH● and H species during the plasma treatment may 
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be attributed due to fragmentation/dissociation of water molecules (H2O + e
-

 → OH● + H● + e
-

) 

and the formation of NO spectral lines may be due to interaction of N2 with O● radicals [11-12].  

The OES results clearly confirms the formation of various ROS and RNS during the plasma 

treatment are aided to the molecules of MG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1. Cold atmospheric pressure plasma jet 
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Figure-2. Optical emission spectra (OES) of (a) normal plasma jet and (b) during the treatment 

 

3.2 Cold atmospheric pressure plasma-assisted degradation of Malachite Green (MG) 

Figure-3a shows the changes in absorption spectra of MG during the plasma treatment 

process at constant applied potential with various treatment times. The absorption spectra of MG 

show maximum absorption at 617 nm [13-15]. After degradation, the intensity of absorption 

spectra decreased with increasing treatment time. The maximum degradation was obtained at 

higher treatment time of 15 min which was found to be similar to the UV-Vis spectra of distilled 

water (Figure-3). 
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Figure-3. (a) UV-Visible absorption spectrum of plasma-treated MG as a function of treatment 

time and (b) percentage of degradation. 
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Figure-3b shows the percentage of degradation of MG with respect to treatment time. It 

was perceived that the  maximum degradation percentage of 90 % was obtained at higher 

treatment time of 15 min due to  reactive species in plasma react very longer duration in air-

liquid interface that leads to produce higher concentration of reactive species which are facilitate 

to increase the degradation of MG molecules in aqueous solution. 

3.3 Kinetic studies of MG degradation  

 The pseudo-first-order kinetic studies of MG degradation using cold atmospheric 

pressure plasma performed at various treatment times and constant applied potential was shown 

in Figure-4. The plasma-assisted MG degradation with various treatment times was followed by 

Pseudo-First order kinetics. The MG aqueous solution degradation rate constant was calculated 

by following expression [16-17]. 

𝑙𝑛
𝐶

𝐶0
=  −𝑘𝑡  

Where, C0 and C represent the MG dye concentration of before and after plasma 

treatment at t time (min), and k is the pseudo-first-order kinetic rate constant.  It was observed 

that k was gradually decreased with increasing the plasma treatment time which indicate the 

degradation of MG molecules in aqueous solution with respect to plasma treatment. 

 

Figure-4 Pseudo-First order kinetic studies of MG degradation with respect to 

treatment time 

3.4 Total Organic Carbon (TOC) Analysis of MG aqueous solution 

In order to determine the amount of mineralization of the plasma-treated MG aqueous 

solution was examined by measuring total organic carbon (TOC). It was found that the TOC of 

untreated MG solution was 58 mg/L and the same was reduced significantly to 45 mg/L due to 

fragmentation of dye molecules in the aqueous solution by plasma treatment which confirms the 

degradation of MG molecules in aqueous solution. 
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Figure-5. TOC analysis of before and after plasma-treated MG aqueous solution 

3.5 Toxicity analysis of plasma-treated MG aqueous solution.  

An additional important goal of this process was to study the plasma-treated MG 

aqueous solution was toxic or not. Thus, the plasma-treated MG aqueous solution was evaluated 

against S. aureus microorganisms [8-9, 18] (Figure-5).  It was observed that clear zone of 

inhibition around untreated MG solution and diameter of the zone was 13 mm. After plasma 

treatment, the zone of inhabitation and its diameter was found to be decreased with increasing 

the treatment time (Figure-6 a and b). There was no zone inhibition around at the 15 min treated 

MG aqueous solution which indicates plasma treated MG solution exhibited non-toxicity against 

micro-organism due to complete degradation of toxic MG molecules in aqueous solution. 

4.0 Conclusion 

In this work, we have presented cold atmospheric pressure plasma assisted degradation 

of MG aqueous solution. The degradation processes were carried out as a function of various 

plasma treatment time with the constant applied potential. It was found that the higher 

degradation or removal percentage of MG was observed at higher plasma treatment time due to 

formation of various ROS and RNS which conformed by OES.  The degradation of the MG 

aqueous solution has followed Pseudo-First order kinetics.  degradation of MG aqueous solution. 
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Figure-6. (a) Toxicity analysis of MG aqueous solution using Staphylococcus aureus 

(b) diameter of zone 

In addition, the plasma-treated MG aqueous solution exhibited   non-toxic nature against 

Staphylococcus aureus. Indeed, the results indicated that the atmospheric pressure plasma 
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assisted effluent treatment is efficient and influences the removal of the organic compound in 

aqueous solution which could be beneficial for various industrial effluents. 
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