

 The Intl J Comp. Comm Inf, 46-51 | 46

A Novel Approach for Remote Compilation using Docker Containers

G. Selvakumar a, *

a Associate Professor, Department of Computer Science and Engineering , Sri Shakthi Institute of Engineering and

Technology, Coimbatore Tamil Nadu, India.

*Corresponding Author

selva@siet.ac.in

(G. Selvakumar)

Received : 18-04-2019
Accepted : 09-05-2019

ABSTRACT: The number of programming languages is getting more and more and

developers are facing a tough time in installing all the compilers, libraries and supporting

files for the development activities. Most of the time they want to experiment with new

technologies, where the efforts required creating a complete environment to run the

programs may not be feasible. On the other hand, several companies have started

recruiting developers through their online programming platforms. In such situations, it is

essential to protect the resources of the server from malicious programs written by the

users by purpose or inadvertently. The client environment has to be as lighter as possible

and the server environment must be as secure and efficient as possible. There are several

existing solutions to meet this objective with plenty of demerits. In this paper we propose a

novel method which overcomes most of the problems in the existing solutions and we have

experimented the effectiveness of the proposed solution. In our proposed method we

develop a docker based sandbox to run the client programs and display the output. We

have developed a complete web interface to test the solution and created a backend to

manage the users, sessions, tested programs and the outcomes which can be used for

analytics too.

Keywords:Docker, virtualization, containerization, remote compilation, hypervisor.

1. Introduction

 Remote compilation of code is required in many

occasions such as interviewing developers by an

organization or experimentation with new technology or

development of a learning platform etc., In these situations,

an ideal solutions can be a server side application which

compiles the code submitted by the user through a web client

and executes the code on the server and displays the results.

For this purpose, the server should consists of all the

compilers and required libraries to support multiple

technologies [1-4]. Frequent update in the libraries and

requirement for new languages necessitates cumbersome

maintenance activities. Another serious problem is about the

quality of the code that the user submits. If the submitted

code is malicious it has intentions to control the server or to

corrupt the server files the damages would be severe. This

can be prevented by adding additional security layers to stop

particular commands or statements and by limiting the

execution time of the submitted programs. However, this will

reduce the efficiency of the server to a greater extent. We

can figure out the objectives such as the submitted code

should not access the server resources, it should access any

ports of the server, should not consume resources beyond a

limit and it should get executed beyond a certain time limit.

To meet all these objectives in an efficient way we need a

more novel idea rather than making our servers more

Completely [5].

2. Background and the Existing Solutions

 To meet the requirements for online compilation

with security and efficiency there are several client server

techniques were experimented. This section analyses few of

them.

 One obvious option is using ‘chroot jail’. A chroot

jail is a technique to isolate a process and its children from

the rest of the system. It cannot be used for the processes that

run as root. Because root users has all the privileges and

breaking out the jail is not challenging. We can create a file

system tree where we store all the system files required.

There are specific system calls like chroot() to modify the

structure and to run the processes in a controlled

environment. Here everything is limited only to a certain

specific files and other files of the system should be away

from access. Their paths cannot be referenced by any means

to make a read or write operation. Though it looks like a

sensible option, in recent times there are several successful

attempts in breaking the chroot jail and it cannot be relied

upon completely [6-10]

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

D
O

I:
 1

0
.3

4
2

5
6

/
ij

cc
i1

9
1

8

Vol. 1 Iss. 1 Year 2019 G.Selvakumar/2019

The Intl J Comp. Comm Inf, 46-51 | 47

 Another popular solution is using the platform

‘Ideone’ which is an online compiler and debugging tool. It

supports more than 60 programming language. However it

is not an efficient solution and it takes huge time to compile

and execute programs.

 Using VMware/Virtual Box is another solution that

we need to consider. A virtual machine (VM) is a software

package (OS) or application setting that's put in on software

system that imitates dedicated hardware. This option wins in

security front and efficiency. However, there is a possibility

that virtual machines can be compromised. In those cases,

detected and recreating is a cumbersome practise. It

consumes huge amount of time. Moreover, the use of virtual

machines results plenty of management concerns, several of

which might be addressed through general systems

administration best practices and tools that square measure

designed to manage VMs. There square measure some risks

to consolidation,

aswellasovertaxingresourcesorprobablyexperiencingoutages

onmultipleVMsbecauseofonphysical hardware outage [11].

3. The Proposed Solution

 Dockers are an open source tool that helps us to

create containers. Containers are isolated sandboxes where

developers can deploy their applications. The container runs

in a host operating system. These containers guarantees

complete process isolation for any deployed application. The

container packages everything required to execute the

application within it. This includes the program,

dependencies, run time, library files, settings etc., It may be a

public cloud or any data centre or it may be even a desktop

or laptop computer, if we use Dockers, the application would

run uniformly and consistently [12].

 Here we need to use the images of supporting

environments in our containers. An image is an executable

package which has everything required by an application. It

can be seen as a blueprint which forms the container. The

image has to be hosted in a registry to be found by others and

use it for their purpose. Docker Hub is a renowned

repository for images. On the other hand, containers are

runtime instances of the image. The container is responsible

for running the application packaged inside it.

 A virtual machine image of Ubuntu can be created

with necessary compilers and Dependencies and its instances

used to run the code submitted by the user.

 If there is any malicious code which tries to corrupt

server resources or perform unauthorised activities, it would

run only inside the container and it could never access

anything beyond the container. And the containers are

created whenever required and destroyed if their task is

completed. So they don’t have to be alive all the time. We can

have all the required compilers and dependencies inside the

same image and use it which is a very efficient option.

The Experiment and Results

 To experimentally evaluate the proposed solution

 A Docker was installed and compiler images were

created. A client server web application was developed to get

the programs from the user. A complete client interface with

options to select programming language, to enter program

and to compile and run was created. The server part was

developed in Node.js. The server is responsible for delegating

the code to the image and to obtain the result.

 From the previous discussions, we have identified

that Docker could be used as remote build environment

which can reduce the complexities of remote compilation

from the server side. We can use the Docker beyond the

possibilities of a mere deployment environment and to add

these new services with some simple steps. It is very

challenging and a slow process to develop and maintain

build machines in the production environments.

 The developer should create an Ubuntu (it can be

any distribution of Linux. In this paper Ubuntu has been

taken for experimentation and analysis). After that, the

dependencies like libraries and tools required have to be

installed. Combined together all these will be responsible for

compilation or interpretation. Any developer can do the

above steps quickly, however management of the created

build system is a complicated one.

Fig1. Architecture for remote compilation using containers

Vol. 1 Iss. 1 Year 2019 G.Selvakumar/2019

The Intl J Comp. Comm Inf, 46-51 | 48

Fig 2.The web interface for entering the code

 Because, in this changing technology environment,

when there is a requirement for update in a library for a

module it poses new challenges in maintaining the system.

The development team will be demanded to back up the

previous code and data before making new changes. The

problems arise when there are several teams are working on

the same project and they keep on adding multiple copies for

the build environment. Very quickly there will be multiple

versions of the code with different variants of the build.

 Maintaining the build machine is not practically

sustainable and we need solutions which is similar to

virtualization where Docker comes to play. Migration of

applications to Docker has already gained lots of attention in

the industrial sector. In our experiment we wanted to build

compilers on remote machines deployed using Docker.

 We use C, C++, Java and Python in the application

containers. The process of creating the build machine has

been given below for Python. Similarly build machines are

created for every language and the images are developed.

The steps followed are

Create a virtual machine with the required operating system

and Ubuntu is preferred.

1. The compiler tools are installed along with all

necessary dependencies and libraries required to

compile from sources.

2. Compile OpenSSL and install it at a custom location.

3. Install the required libraries and -dev packages

needed to build Python from sources. In other cases

libraries for the respective language has to be

installed.

4. Compile Python from sources, pointing it to our

custom-installed OpenSSL.

5. Compile all needed Python modules and dependent

libraries that are linked against OpenSSL, again

pointing it to our custom OpenSSL.

Vol. 1 Iss. 1 Year 2019 G.Selvakumar/2019

The Intl J Comp. Comm Inf, 46-51 | 49

6. Build the application and verify that it is correctly

linked to our custom OpenSSL.

 Manually installing the libraries from the sources

and pre compiled system packages are a very long process

and error prone. Along the way, some libraries are installed

via sources, some pre-compiled and some via the system

packages.

 Docker is considered as a deployment environment

in most of the cases. It is used for the toolset around that

environment. It has greater flexibility and interactive nature

to support the build process. The images are created with the

help of a file which is like a windows batch file. This is

known as Docker file and this file is processed line by line in

the process of creating an image. Image metadata is created

using the Docker file. Here we provide a sample Docker file.

#This is a sample Image

FROM ubuntu

MAINTAINER demousr@gmail.com

RUN apt-get update

RUN apt-get install –y nginx

CMD [“echo”,”Image created”]

FROM gcc: 8.2

COPY.

/usr/src/myapp

WORKDIR

/usr/src/myapp

RUN gcc -o myapphello.c

EXPOSE 3000

CMD ["./myapp]

Cpp

FROM gcc:8.2

COPY.

/usr/src/myapp

WORKDIR

/usr/src/myapp

RUN g++ -o myapp hello.cpp

EXPOSE 3000

CMD ["./myapp]

Python

FROM python:3

WORKDIR

/usr/src/app

COPY requirements.txt

./

RUN pip install --no-cache-dir–r

requirements.txt

COPY. .

CMD ["python", "./hello.py"]

Php

FROM php:7.2-cli

COPY .

/usr/src/myapp

WORKDIR /usr/src/myapp CMD ["php", "./hello.php"]

Ruby

FROM ruby: 2.5

RUN bundle config --global frozen

WORKDIR

/usr/src/app

COPY GemfileGemfile.lock.

RUN bundle instal

COPY. .

CMD ["./hello.rb"

Fig3. The web interface for input and output

 The above is sample Docker file contents for

multiple images. We have experimented with C, C++,

Python, Ruby and PHP. The base machine layer is the first

part and we start describing about the further layers based

on that.

 Fig.2 and 3 are depicting how the user interface

functions to run the compilers on the Docker backend. It is a

simple web page where the user has options to enter the

program and input parameters. The user would never have

an idea what happens in the backend.

 The backend part has been implemented by Node.js.

Node.js is an open-source, cross-platform JavaScript run-

time environment. Usually JavaScript is embedded in the

HTML files and they are executed in the client side, thus

called client side scripting. However Node.js enables us to

develop server side scripting for dynamic web pages. The

following section has a fragment of Node.js code which is

responsible for understanding the language choice from the

Vol. 1 Iss. 1 Year 2019 G.Selvakumar/2019

The Intl J Comp. Comm Inf, 46-51 | 50

user and to save the program file in the server with proper

extension.

app.post('/get_code', function (req, res) {

const data = {};

data["lang"] = req.body.lang;

data["code"] =req.body.code;

data["input"] = req.body.input;

res.json(data);

varlang_string = data.lang;

varcode_string = data.code;

varinput_string = data.input;

if (lang_string === 'c') {

varlang_string = data.lang;

varcode_string = data.code;

varinput_string = data.input;

if (lang_string === 'c') {

fs.writeFile('hello.c', code_string, function (err) {

if (err) {

console.log(err);

}

else{

console.log('hello.c was updated.');

fs.writeFile('input_c.txt', input_string, function (err) {

if (err) {

console.log(err);

}

else {

console.log('input_c.txt was updated.');

}

var spawn = equire('child_process').spawn,

ls = spawn('cmd.exe', ['/c', 'build.bat']);

ls.stdout.on('data', function (data) {

console.log('stdout: ' + data);

}

ls.stderr.on('data', function (data) {

console.log('stderr: ' + data);

}

ls.on('exit', function (code) {

console.log('child process exited with code ' + code);

}}

}}

}

else if (lang_string === 'cpp')

fs.writeFile('hello.cpp', code_string, function (err) {

if (err) {

console.log(err);

}

else {

console.log('hello.cpp was updated.');

fs.writeFile('input_cpp.txt', input_string,function (err) {

if (err) {

console.log(err);

}

else {

console.log('input_cpp.txt was updated.');

}

var spawn = require('child_process').spawn,

ls = spawn('cmd.exe', ['/c', build_cpp.bat']);

ls.stdout.on('data', function (data) console.log('stdout: '+

data);

});

ls.stderr.on('data', function (data)

console.log('stderr: ' + data);

});

ls.on('exit', function (code) {

console.log('child process exited with code ' + code);

});

});

}

});

 The server side scripting extracts the program

content and saves it with appropriate .c, .cpp, .py or other

extensions. Based on that the suitable compiler image is

invoked and the code is getting executed. The output

generated in the backend is displayed in the front page as

illustrated in the figure 3.

5. Conclusion

 The developed system has been thoroughly tested

with malicious code, improper arguments for the function

calls and attempts to access the files inside the server.

However, none of these actions made the server to crash or

lose its efficiency. All the server requests were handled only

inside the container and the user could never identify any

difference that their code is running inside a sandbox. The

server side scripting was done with node.js which is very

Vol. 1 Iss. 1 Year 2019 G.Selvakumar/2019

The Intl J Comp. Comm Inf, 46-51 | 51

flexible in controlling the backend operations. With the help

of framework created, it can be extended for any number of

programming languages. This can be used for any web based

programming interviews or competitions without worrying

about security and it provides better control of entire

workflow.

References

[1] BabakBashari Rad, Harrison John Bhatti, Mohammad

Ahmad, An Introduction to Docker and Analysis of its

Performance, Inter. J.Com. Sci. Net. Sec. 17 (2017) 228-

235.

[2] B.Varghese, L. T.Subba, L.Thai, A. Barker, Container-

Based Cloud Virtual Machine Benchmarking, 2016 IEEE

Intern. Conf. Cloud Eng., (2016) 16039489.

[3] A. M. Joy, Performance comparison between Linux

containers and virtual machines, Paper presented at the

Computer Engineering and Applications, 2015 Intern.

Confe. Adv. Com. Eng. App. (2015).

[4] Paolo Di Tommaso, Emilio Palumbo, Maria Chatzou,

Pablo Prieto, Michael L. Heuer, Cedric Notredame, The

impact of Docker containers on the performance of

genomic pipelines, Peer J. 3 (2015) e1273.

[5] Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu,

Wei Zhou, A Comparative Study of Containers and

VirtualMachines in Big Data Environment, 2018 IEEE

11th Inter. Confe. Cloud Comp. (2018)

[6] S. Abdulla, S. Iyer, S. Kutty, Cloud based

compiler, Inter.J. Stu. Res. Tech. Man. 1 (2016), 308-

322.

[7] Xiaolin Geng, Xuewen Zeng, Linlin Hu and Zhichuan

Guo, An novel Architecture and Inter-process

Communication Scheme to Adapt Chromium Based on

Docker Container, Inter. Congress Info. Comm. Tech.

(2017) 691-696.

[8] E.N. Preeth,Jaison Paul Mulerickal, Biju Paul, Yedhu

Sastri, Evaluation of docker containers based on

hardware utilization, 2015 Inter. Confe. Con. Comm. &

Comp. India, (2015) 19-21.

[9] Fawaz Paraiso, Stéphanie Challita, Yahya Al-

Dhuraibi, Philippe Merle, Model Driven Management of

Docker Containers, 2016 IEEE 9th Inter. Confe. Cloud

Comp. (2017).

[10] David Bernstein, Containers and Cloud: From LXC to

Docker to Kubernetes, IEEE Cloud Computing, 1(2014)

[11] Krishan Kumar, Manish Kurhekar, Economically

Efficient Virtualization over Cloud Using Docker

Containers, IEEE Inter. Conf. Cloud Comp. Emer. Mark.

(2017).

[12] Pankaj Saha, Piotr Uminski, Evaluation of Docker

Containers for Scientific Workloads in the Cloud,

Proceedings of the Practice and Experience on Advanced

Research Computing (2018)

About The License

© 2019 The Authors. This work is licensed under a Creative

Commons Attribution 4.0 International License which

permits unrestricted use, provided the original author and

source are credited.

https://ieeexplore.ieee.org/author/37085651118
https://www.researchgate.net/profile/Krishan_Kumar45
https://www.researchgate.net/profile/Manish_Kurhekar

