

RESEARCH ARTICLE

International Journal of Civil, Environmental and Agricultural Engineering

Artificial Intelligence and Agricultural Biotechnology for Sustainable Farming Practices

K. Kavitha ", R. Senthil Kumar "

- ^a Department of Computer Applications, Dr.N.G.P. Arts and Science College, Coimbatore-641048, Tamil Nadu, India
- ^b Department of Computer Science with Cognitive Systems, Dr.N.G.P. Arts and Science College, Coimbatore-641048, Tamil Nadu, India 641048
- * Corresponding Author: <u>kavitha.k@drngpasc.ac.in</u>

Received: 21-08-2024, Revised: 15-11-2024, Accepted: 22-11-2024, Published: 05-12-2024

Abstract: Agriculture is facing unprecedented challenges, including climate change, resource limitations, and the growing demand for sustainable practices. This article explores how the integration of biotechnology and artificial intelligence (AI) can address these issues. Biotechnology tools such as GMOs, CRISPR-Cas9, and synthetic biology enable the development of robust crops, enhanced pest resistance, and improved resource efficiency. AI complements these advancements through machine learning, predictive analytics, and robotics, facilitating better crop management, health monitoring, and yield prediction. The review highlights AI's role in refining data analysis for genetic modifications and optimizing crop management strategies, showcasing the synergy between biotechnology and AI. Notable applications include the optimization of CRISPR technologies and the creation of diseaseresistant crops. However, significant challenges remain, such as technical limitations, ethical concerns surrounding genetic modifications, and the economic impact on small-scale farmers. Addressing these challenges requires a comprehensive approach involving robust regulatory frameworks and stakeholder collaboration. Future directions include leveraging AI for precision breeding and integrating advancements in synthetic biology to enhance agricultural sustainability and productivity. Continued collaboration between biotechnology and AI will be essential to overcoming current limitations and achieving a sustainable future for agriculture.

Keywords: Agricultural biotechnology, Artificial intelligence (AI), Climate change, Sustainable agriculture, Genetically Modified Organisms (GMOs), Synthetic biotechnology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)

1. Introduction

Agriculture is at a turning point, facing serious challenges like climate change, limited resources, and the need for more sustainable practices. Changes in rainfall patterns, extreme weather, and rising temperatures are putting crops at risk, threatening food supplies, and putting more pressure on already scarce water resources. On top of these environmental issues, essential resources like farmland, water, and nutrients are running out quickly, making it harder to produce enough food [1]. Traditional farming methods are not equipped to handle these problems, especially with the added pressure of a growing population. Additionally, overusing chemicals in farming has damaged soil and reduced biodiversity, making traditional farming less sustainable for the future.

Given these urgent challenges, there is growing recognition of the need for innovative and sustainable farming methods. This review explores how combining biotechnology and artificial intelligence (AI) could provide key solutions to these problems. Advances in biotechnology, such as genetic modification and synthetic biology, offer ways to develop crops that are more resilient to environmental stress and use resources more efficiently.

At the same time, AI technologies like machine learning and data analytics provide powerful tools to enhance farming practices, including precision agriculture and crop management predictions [2]. This review aims to evaluate how the integration of biotechnology and AI can support a sustainable future for agriculture. By examining recent advancements, practical applications, and challenges, it seeks to show how these technologies can work together to create a more resilient and eco-friendly farming system [3].

2. Related Works

2.1. Biotechnological Approaches for Agriculture

Agricultural biotechnology uses science and technology to change living systems and organisms to boost crop production, improve food quality, and solve farming problems. It includes different techniques that apply biological ideas to farming, helping crops develop useful traits and improving how farming is done.

A major achievement in this field is genetically modified organisms (GMOs). These are plants altered through genetic engineering to have special features, like resisting pests, diseases, or herbicides. For instance, BT cotton is genetically modified to produce a protein that is toxic to certain insects, reducing the need for pesticides and increasing crop yields [4].

This article [5] takes a close look at the advancements and challenges related to genetically modified crops in India, particularly their role in food security and sustainable agriculture. It discusses genetic engineering techniques like CRISPR-Cas9 that can improve crop traits such as yield, nutrition, and disease resistance. The historical development of GM

crops, from GM tobacco to drought-tolerant wheat, highlights how quickly this field is evolving. It also touches on the regulatory and ethical dilemmas surrounding GM crops, including safety concerns and environmental implications.

CRISPR-Cas9 is a groundbreaking technology that allows scientists to make precise changes to an organism's DNA. It has revolutionized genetic engineering by enabling targeted changes, such as improving disease resistance or increasing the nutritional value of crops. This technology helps create new crop varieties with specific traits more quickly, addressing challenges like low productivity and poor resilience.

In the article [6], CRISPR-Cas9 is a cutting-edge genome-editing tool derived from bacterial immune systems, enabling precise DNA modifications using a guide RNA to target specific sequences. Compared to earlier methods like ZFNs and TALENs, CRISPR is more efficient, scalable, and easier to use. It facilitates genetic research, biotechnology advancements, and medical applications, including gene therapy for genetic disorders. CRISPR is also employed in transcriptional regulation, disease modeling, and crop improvement. Despite its vast potential, challenges such as off-target effects, efficient delivery mechanisms, and ethical concerns remain.

The CRISPR/Cas system [7] is advancing beyond DNA editing to treat diseases, but safe delivery remains a challenge. Traditional methods face immune clearance, while alternatives like AAV, lipid nanoparticles, and exosomes offer better safety and targeting. Tailored nanomaterials can improve precision, and researchers are developing more accurate Cas9 variants to reduce off-target effects. Understanding disease mechanisms is key to enhancing CRISPR's clinical potential.

Synthetic biology is another exciting area in agricultural biotechnology. It involves redesigning and creating new biological parts, tools, and systems. Scientists can use it to modify crops to produce valuable substances or perform new functions by designing artificial pathways and organisms [8].

One use of synthetic biology is designing plants that can make medicines or biofuels, broadening the range of agricultural products beyond just food. These biotechnology advancements work together to enhance crops, protect them from pests, and use resources more efficiently. GMOs and CRISPR technologies help create crops that can handle environmental challenges better and need fewer chemical inputs. Synthetic biology opens the door to plants with better traits or entirely new purposes, making agriculture more eco-friendly. Together, these technologies offer practical solutions to modern farming problems, supporting a more efficient and sustainable food production system.

2.2. Artificial Intelligence for Agriculture

Artificial Intelligence (AI) encompasses a range of technologies designed to replicate human intelligence, such as learning, reasoning, and self-improvement. In agriculture, AI has a significant impact by leveraging machine learning and data analytics to provide advanced analysis and decision-making support. Machine learning, a subset of AI, uses algorithms to learn from data and make predictions. In farming, this technology helps analyze vast amounts of data from various sources to improve agricultural practices. Data analytics, on the other hand, involves examining large datasets to uncover patterns and insights, helping farmers make better-informed decisions.

The article [8] highlights various AI technologies that enhance food production by optimizing agricultural practices. Predictive modeling forecasts crop yields, aiding resource allocation, while precision agriculture improves farming efficiency through optimized irrigation, pest control, and resource usage. Computer vision algorithms analyze drone and imaging data to detect crop health issues early, and machine learning enhances decision-making in crop management. AI-integrated IoT devices enable real-time monitoring of environmental factors, while robotic systems automate labor-intensive tasks like harvesting. Additionally, AI-driven genomic analysis aids crop breeding for desirable traits. Collectively, these innovations improve productivity, sustainability, and food security.

Key AI technologies in agriculture include predictive analytics, computer vision, and robotics. Predictive analytics uses historical and current data to forecast outcomes like crop yields, disease spread, and weather patterns. Computer vision applies image recognition to assess crop health and detect pest infestations, enabling quick action. Robotics, such as autonomous tractors and drones, handle tasks like planting, harvesting, and field monitoring, boosting productivity and reducing labor costs. AI's role in biotechnology extends to enhancing research and development. AI algorithms can analyze genetic data to identify beneficial traits and predict the effects of genetic changes, speeding up the development of genetically modified crops and improving biotechnological processes to increase agricultural productivity and sustainability. Overall, AI's advancements in precision farming, crop monitoring, and yield forecasting are crucial for improving efficiency, productivity, and sustainability in modern agriculture.

3. Integration of AI Technologies in Biotechnological Research

The combination of biotechnology and AI [9] is a powerful force that significantly enhances agricultural research and development. By merging these fields, scientists can leverage AI's advanced data analysis capabilities to make breakthroughs in biotechnology. One major benefit of combining AI with biotechnology is improving the analysis of genetic modification data. AI algorithms can rapidly and accurately process large volumes of genomic data, identifying genetic markers related to desirable traits, such as drought or disease

resistance. For example, machine learning algorithms have been used to analyze gene expression data and predict the outcomes of genetic modifications, making the creation of genetically modified crops with better traits more efficient [10].

AI and biotechnology also work together to optimize crop management strategies. AI-driven tools like predictive analytics and computer vision can assess environmental and crop data to provide valuable insights. These tools help improve farming techniques, such as precision irrigation and targeted pest control. For example, AI can predict the best times for irrigation by analyzing weather forecasts and soil moisture levels, leading to less water usage and higher crop yields. The potential of this collaboration is seen in successful projects [11, 12]. One notable example is the use of AI by researchers at the University of Illinois to analyze plant genomics data and identify genetic variations linked to disease resistance. This work helped develop crop varieties that are more resistant to diseases, demonstrating AI's potential to accelerate biotechnological progress [13, 14].

3.1 AI and GMO

In article [15], Genetically modified (GM) crops play a crucial role in addressing food security and climate change as given in Figure 1, yet concerns about their safety, environmental impact, and ethics persist. Traditional risk assessment methods are labor-intensive and limited, but artificial intelligence (AI) offers a transformative approach by analyzing large datasets for more accurate risk predictions. AI enhances agricultural resilience, sustainability, and productivity by identifying patterns in complex data, optimizing resource use, and forecasting risks. By improving transparency and ethical development, AI can help stakeholders make informed decisions regarding GM crop safety, though it's full potential in risk assessment remains underexplored.

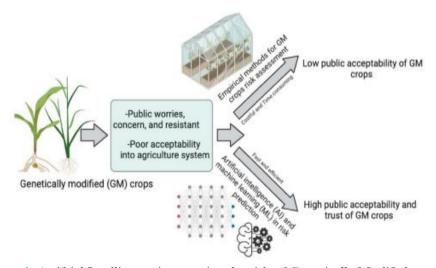


Figure 1. Artifcial Intelligence in assessing the risk of Genetically Modified crops

Risk assessment for GM crops [16] must consider health impacts such as allergenicity and toxicity, along with environmental concerns like biodiversity loss and soil health. Gene flow to non-GM crops presents ecological risks, while the stability of inserted genes is crucial for maintaining desired traits. Socioeconomic factors, regulatory compliance, and ecological risk assessments also play significant roles. Traditional risk evaluation methods, including empirical research and controlled experiments, are costly and time-consuming. AI can enhance these assessments by identifying correlations, predicting allergenicity, and evaluating gene flow risks, leading to more reliable safety evaluations and informed regulatory decisions.

The paper discusses the use of various machine learning (ML) algorithms for assessing risks associated with genetically modified (GM) crops. These algorithms are particularly effective in analyzing large datasets that include genetic, environmental, and agronomic factors. Specific types of ML algorithms used are mentioned below.

- Neural Networks are used for their ability to model complex relationships within data.
- Support Vector Machine algorithm is effective for classification tasks and can help in identifying patterns related to GM crop risks.
- Decision Trees: These provide a clear and interpretable model for decision-making based on various input factors

The integration of these AI models allows for the creation of predictive models that can forecast the probability and severity of potential hazards linked to GM crops. This includes assessing risks such as crop failure, environmental pollution, and health effects

Overall, the application of these AI models enhances the accuracy and efficiency of risk assessments in agricultural biotechnology, ultimately contributing to better decision-making and increased public acceptance of GM products

AI-driven risk assessments improve accuracy and transparency, increasing confidence in GM crops and potentially boosting public acceptance. AI enables real-time monitoring, proactive risk management, and optimization of genetic modifications like CRISPR, improving safety and efficiency. However, challenges remain, including data scarcity, resource-intensive AI training, and concerns over algorithm interpretability and ethical issues. Ensuring high-quality data and regulatory compliance is essential for AI integration in GM crop safety evaluations. Future research should focus on overcoming these challenges to enhance GM product acceptance and support sustainable agricultural advancements.

3.2 AI and CRISPR

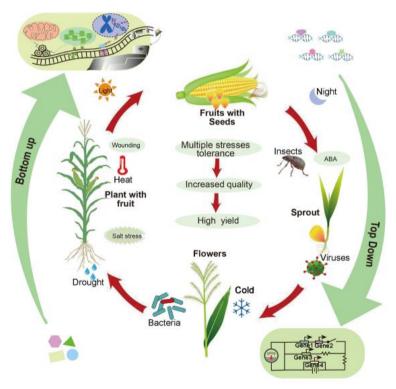
Another example is AI's role in improving CRISPR gene editing. AI models have been designed to predict the effectiveness of CRISPR edits, reducing off-target effects and increasing the accuracy of genetic modifications. The integration of AI with biotechnology has improved genetic engineering processes, showing the practical benefits of this collaboration. Overall, the combination of biotechnology and AI enhances the precision, efficiency, and success of agricultural research and applications, driving progress toward a more sustainable and productive agricultural future [17].

The article [18] highlights the significance of crop yield enhancement for sustainable agriculture and food security, emphasizing the limitations of traditional breeding methods, such as time consumption and imprecision. CRISPR technology, with its precise genome editing capabilities, offers a promising solution for improving crop traits like yield and disease resistance. As global populations grow, there is an urgent need to boost crop production while minimizing environmental impacts, making CRISPR-mediated crop improvement an essential tool for addressing food security challenges. The article serves as a resource for stakeholders aiming to adopt innovative technologies for sustainable agriculture.

The methodology section outlines the key steps involved in CRISPR-based crop improvement. It starts with the identification of target genes linked to desirable traits such as yield. The CRISPR system, consisting of guide RNA (gRNA) and Cas9 protein, is then introduced to plant cells to create double-strand breaks at specific genomic locations. The process includes gene knockout, insertion, or replacement, followed by the use of DNA repair mechanisms to introduce mutations. Successful mutations are validated through various analysis techniques, and field trials are conducted to assess the performance of CRISPR-edited plants compared to their wild counterparts. Ethical and regulatory considerations also play a crucial role in this process.

The results and discussion section emphasize the positive outcomes of CRISPR applications in enhancing crop traits such as plant architecture, nutrient uptake, and synchronized flowering, all of which contribute to improved crop yields. Compared to traditional breeding, CRISPR offers faster, more accurate trait improvements, enabling greater agricultural productivity with less environmental impact. However, challenges remain in regulatory frameworks and public acceptance, with case studies showing both successes and challenges in modifying staple crops like wheat and maize. The paper concludes that while CRISPR holds great potential, continued research, regulatory development, and ethical considerations are necessary for its responsible deployment to meet global food demands.

3.3 AI and Synthetic Biology


The paper [19] discusses the integration of synthetic biology (SynBio) and artificial intelligence (AI) in enhancing crop traits, which has several practical implications including accelerated crop development, enhanced crop traits, precision in genetic engineering and data-driven decision making.

AI-driven protein engineering leads to accelerated crop development which can significantly shorten the time required to develop new crop varieties by predicting and screening functional proteins from large libraries. This can lead to faster breeding cycles and quicker adaptation to changing agricultural demands.

The application of synthetic biotechnology allows for enhanced crop traits by the introduction of genetic elements that can create SMART crops. These crops can exhibit high yields, improved nutritional content, and enhanced resistance to environmental stresses. This is crucial for meeting the food demands of a growing global population.

This paper highlights several AI tools and techniques that are instrumental in enhancing crop improvement through synthetic biology. The key AI tools used are given below.

Tools like BioGPT and ChatGPT, built on the GPT framework, are widely used. The newly introduced biomedical GPT (BiomedGPT) model leverages self-supervision across diverse datasets to handle multi-modal inputs, including images, text, and bounding boxes, thereby pushing the boundaries of biomedicine.

Figure 2. Plant defense against various biotic and abiotic stresses through top-down or bottom-up synthetic biology approaches

CRISPR-GPT, a large language model (LLM) agent augmented with domain knowledge and external tools, automates and enhances the design of CRISPR-based gene-editing experiments. Leveraging their robust reasoning capabilities, LLMs facilitate the selection of CRISPR systems, design of guide RNAs, recommendation of cellular delivery methods, drafting of protocols, and planning of validation experiments to confirm editing outcomes.

The use of AI in predicting genetic sites and calculating enzyme activity enables more precise modifications in crops leading to precision in genetic engineering. This precision can lead to the development of crops with specific desired traits, such as improved photosynthetic efficiency and better nutrient absorption.

The learning step in AI models creates a data-rich platform that can inform the design of optimal genetic modules. This data-driven decision making approach can streamline the breeding process and enhance the efficiency of crop improvement strategies. The effectiveness of AI models relies on high-quality, comprehensive datasets. Inconsistent data from various sources can hinder the integration and analysis necessary for effective AI applications in crop improvement. Despite the potential benefits, there are challenges to consider. The complexity of crop traits, influenced by multiple genes and environmental factors, makes modeling these interactions difficult for AI algorithms. Additionally, the regulatory landscape for genetically modified crops varies widely, which can complicate the deployment of these technologies

Thus, the integration of these AI tools in crop improvement not only enhances the efficiency of breeding programs but also enables the development of crops with improved traits, ultimately contributing to agricultural sustainability and productivity. However, addressing the associated challenges is essential for realizing these benefits in practical applications.

4. Overcoming the Challenges of AI Integration in Agricultural Biotechnology

A key challenge in integrating AI with agricultural biotechnology is the difficulty of combining the two fields effectively. AI systems require large amounts of high-quality data to function properly, but collecting this data can be difficult due to the complex and ever-changing nature of biological systems. Additionally, ensuring the accuracy and reliability of AI models in predicting genetic outcomes or crop yields remains a challenge. Errors in AI predictions could lead to unexpected results, such as the development of crops with unforeseen vulnerabilities [20, 21].

Ethical concerns also play a significant role. Genetic modifications and AI-driven interventions raise questions about their long-term effects on ecosystems and biodiversity. There is a need for careful examination to avoid unintended ecological consequences and address the ethical implications of altering plant and animal genomes through GMOs. Public

acceptance of GMOs and biotechnological advancements is another major concern, with many people expressing resistance due to safety and environmental concerns [22, 23].

From an economic perspective, adopting AI and biotechnology can be costly. Small-scale farmers and regions with limited resources may struggle to afford the substantial investment needed to develop and deploy these technologies. The gap in access to advanced technologies may increase the divide in agricultural productivity and economic stability between large agribusinesses and smaller farms [24].

The shift towards AI and biotechnology could also lead to social impacts, such as job loss. Automation and AI-powered technologies could reduce the demand for traditional agricultural labor, impacting job opportunities in rural areas. Additionally, there are concerns about a concentration of technological power in a few large companies, potentially leading to monopolistic behavior and control over food systems. Addressing these challenges requires a comprehensive approach, including strong regulatory frameworks, ongoing research, and the involvement of all stakeholders to ensure that the integration of biotechnology and AI benefits society as a whole while managing risks and ethical considerations.

5. Future Prospects and Potential of AI in Agricultural Technology

The integration of AI and biotechnology is set to bring major advancements that will revolutionize the agricultural sector. One emerging trend is the use of AI in precision breeding, where AI-driven tools in phenomics and genomics are enhancing the efficiency of selecting and breeding plants with desirable traits, surpassing traditional methods. This innovation will accelerate the development of crop varieties that are better equipped to handle climate change and diseases [25].

Another exciting development is the combination of AI with synthetic biology to engineer microbes and plants tailored for specific environmental conditions or agricultural needs. For instance, AI is being used to design artificial pathways in plants that improve nutrient absorption or enable biofuel production, potentially reducing the need for chemical fertilizers and fossil fuels. Future advancements also include the use of AI-powered drones and sensors for real-time crop monitoring and management. These technologies will provide farmers with precise data on crop health, soil conditions, and pest activity, allowing for more targeted interventions and minimizing resource waste [26].

Overall, these advancements hold the potential to greatly enhance agricultural sustainability, increase productivity, and reduce environmental impact, marking the beginning of a new era of smart and sustainable farming.

6. Conclusion

The integration of AI and biotechnology is poised to drive significant advancements that will revolutionize the agricultural sector. One emerging trend is the use of AI in precision breeding, where AI-driven phenomics and genomics are enhancing the efficiency of selecting and breeding plants with optimal traits, outpacing traditional methods. This will accelerate the development of crop varieties that are more resilient to climate change and diseases.

Another promising development is the combination of AI with synthetic biology to modify microbes and plants for specific environmental conditions or agricultural needs. For instance, AI is being used to design new pathways in plants to improve nutrient absorption or produce biofuels, potentially reducing reliance on chemical fertilizers and fossil fuels. Future innovations also include the deployment of AI-powered drones and sensors for real-time crop monitoring and management. These technologies will provide farmers with precise data on crop health, soil conditions, and pest activity, enabling more targeted interventions and minimizing resource waste.

Thus, in conclusion, these advancements have the potential to significantly enhance agricultural sustainability, improve productivity, and reduce environmental impact, marking the beginning of a new era of intelligent and sustainable farming.

References

- [1] J. Jung, M. Maeda, A. Chang, M. Bhandari, A. Ashapure, J. Landivar-Bowles, The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, (2021) 15-22. https://doi.org/10.1016/j.copbio.2020.09.003
- [2] P. Ashoka, B.R. Devi, N. Sharma, M. Behera, A. Gautam, A. Jha, G. Sinha, Artificial Intelligence in Water Management for Sustainable Farming: A Review. Journal of Scientific Research and Reports, 30(6), (2024) 511-525. https://doi.org/10.9734/jsrr/2024/v30i62068
- [3] H.M. Patel, The transformative role of artificial intelligence in modern agriculture. Review of Artificial Intelligence in Education, 4(00), (2023) e014-e014. https://doi.org/10.37497/rev.artif.intell.educ.v4i00.14
- [4] D. Shikha, K.A. Sindhura, M. Rastogi, B. Saritha, S.N. Satapathy, S. Srivastava, A.K. Kurdekar, A Review on Propelling Agricultural Practices with Biotechnology into a New Era. Journal of Advances in Biology & Biotechnology, 27(3), (2024) 99-111. https://doi.org/10.9734/jabb/2024/v27i3725

- [5] T. Li, Y. Yang, H. Qi, W. Cui, L. Zhang, X. Fu, X. He, M. Liu, P.F. Li, T. Yu, CRISPR/Cas9 therapeutics: progress and prospects. signal transduction and targeted therapy, 8, (2023) 36. https://doi.org/10.1038/s41392-023-01309-7
- [6] G.K. Walia, D. Chopra, B. Sidhu, Advancements and Challenges of Genetically Modified Crops in India: A Critical Overview. International Journal of Creative Research Thoughts (IJCRT), 12(9), (2024) 406-427.
- [7] J.A. Anderson, M. Gipmans, S. Hurst, R. Layton, N. Nehra, J. Pickett, D.M. Shah, T. Lívio P.O. Souza Leena Tripathi Emerging agricultural biotechnologies for sustainable agriculture and food security. Journal of Agricultural and Food Chemistry, 64(2), (2016) 383-393. https://doi.org/10.1021/acs.jafc.5b04543
- [8] A.N. Yadav, R. Kumar, S. Kumar, V. Kumar, T. Sugitha, B. Singh, V.S. Chauahan, H.S.Dhaliwal, A.K. Saxena, Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. Journal of Applied Biology and Biotechnology, 5(6), (2017) 45-57. https://dx.doi.org/10.7324/JABB.2017.50607
- [9] A.O. Adewusi, O.F. Asuzu, T. Olorunsogo, C. Iwuanyanwu, E. Adaga, D.O. Daraojimba. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 21(1), (2024) 2276-2285. https://doi.org/10.30574/wjarr.2024.21.1.0314
- [10] J. Zha. Artificial Intelligence in Agriculture. In Journal of Physics: Conference Series, IOP Publishing, 1693 (2020) 012058.
- [11] E. Elbasi, N. Mostafa, Z. AlArnaout, A.I. Zreikat, E. Cina, G.Varghese, A. Shdefat, A.E. Topcu, W. Abdelbaki, S. Mathew, C. Zaki, Artificial intelligence technology in the agricultural sector: A systematic literature review. IEEE access, 11, (2022)171-202. https://doi.org/10.1109/ACCESS.2022.3232485
- [12] S. Sharma, K. Verma, P. Hardaha, Implementation of artificial intelligence in agriculture. Journal of Computational and Cognitive Engineering. 2(2), (2023) 155-162. https://doi.org/10.47852/bonviewJCCE2202174
- [13] M. Sheikh, F. Iqra, H. Ambreen, K.A. Pravin, M. Ikra, Y.S. Chung. Integrating artificial intelligence and high-throughput phenotyping for crop improvement. Journal of Integrative Agriculture, 23(6), (2024)1787-1802. https://doi.org/10.1016/j.jia.2023.10.019
- [14] J.T. O'Brien, C. Nelson, Assessing the risks posed by the convergence of artificial intelligence and biotechnology. Health Secur, 18(3), (2020) 219-227. https://doi.org/10.1089/hs.2019.0122

- [15] A. Taneja, G. Nair, M. Joshi, S. Sharma, S. Sharma, A.R. Jambrak, E.R. Soto, F.J. Barba, J. M. Castagnini, N. Leksawasdi, Y. Phimolsiripol, Artificial intelligence: Implications for the agri-food sector. Agronomy. 13(5), (2023) 1397. https://doi.org/10.3390/agronomy13051397
- [16] G.S. Mmbando, The use of artificial intelligence in the production of genetically modified (GM) crops: a recent promising strategy for enhancing the acceptability of GM products? Discover Applied Sciences, 6(11), (2024) 1-12. https://doi.org/10.1007/s42452-024-06212-6
- [17] K. Marshall, (2023) Enhancing Crop Yields through CRISPR Technology: A Promising Approach for Sustainable Agriculture. Biochemistry and Molecular Biology.
- [18] V.E. Hillary, S.A. Ceasar, A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular Biotechnology, 65(3), (2023) 311-325. https://doi.org/10.1007/s12033-022-00567-0
- [19] D. Zhang, F. Xu, F. Wang, L. Le, L. Pu, Synthetic biology and artificial intelligence in crop improvement. Plant Communications. 6(2), (2024) 101220.
- [20] S. Dixit, A. Kumar, K. Srinivasan, P.M.D. Vincent, N. Ramu Krishnan, Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Frontiers in Bioengineering and Biotechnology, 6(2), (2025) 1335901. https://doi.org/10.3389/fbioe.2023.1335901
- [21] A. Tzachor, M. Devare, B. King, S. Avin, S.Ó hÉigeartaigh, Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2), (2022) 104-109. https://doi.org/10.1038/s42256-022-00440-4
- [22] R. Dara, S.M. Hazrati Fard, J. Kaur, Recommendations for ethical and responsible use of artificial intelligence in digital agriculture. Frontiers in Artificial Intelligence, 5, (2022) 884192.
- [23] V. Petousi, R. Meilan, J. Sweet, T. Twardowski, A. Altman, Promoting ethically responsible use of agricultural biotechnology. Trends in Plant 26(6), (2021)546-559. Science, https://doi.org/10.1016/j.tplants.2020.12.015
- [24] S. Das, M. Kaur, V. Chhabra, T. Nandi, P. Mishra, S. Ghosh. A Systematic Review of Artificial Intelligence: A Future Guide to Sustainable Agriculture. International Journal of Environment and Climate Change, 14(4), (2024) 562-573. https://doi.org/10.9734/ijecc/2024/v14i44139

- [25] M. Pathan, N. Patel, H. Yagnik, M. Shah Artificial cognition for applications in smart agriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4, (2020) 81-95. https://doi.org/10.1016/j.aiia.2020.06.001
- [26] A.A. Mana, A, Allouhi, A. Hamrani, S. Rahman, I. el Jamaoui, K. Jayachandran, Sustainable AI-Based Production Agriculture: Exploring AI Applications and Implications in Agricultural Practices. Smart Agricultural Technology, 7, (2024) 100416. https://doi.org/10.1016/j.atech.2024.100416

Funding: No funding was received for conducting this study.

Conflict of interest: The Author's have no conflicts of interest to declare that they are relevant to the content of this article.

About The License: © The Author(s) 2024. The text of this article is open access and licensed under a Creative Commons Attribution 4.0 International License.