Quantification and characterisation of microplastic pollution and its ecological risk in the coastline of Tuticorin, India

  • Glen Esmeralda V Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India
  • Shelciya S Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India
  • Jamila Patterson Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India
Keywords: Microplastics, Sediments, Water, Polymer hazard index, Polymer load index, Potential ecological risk index, Coastlines of Tuticorin

Abstract

Microplastics (MPs) are present practically everywhere in the coastal ecosystems, including the sediment of beaches and wetlands as well as the columns of surface and subsurface waters. Marine MPs are most frequently found in the near shore zones. Due to their potential negative impact on ecosystem functions, MPs have become a significant environmental problem worldwide. Contamination by microplastics has been well-documented around the world and it has drawn the attention of the scientific community, governmental and international organisations and the general public. In the present study, involving the isolation, assessment and characterisation of MP debris collected from six coastlines with recreation and fishing activities in Tuticorin district, the most common MP polymers identified are polypropylene, polyethylene, polyamide and polystyrene. The maximum number of MPs are found in the sediment samples of Tiruchendur (with an average of 8.33 5.3), and the least number of MPs are observed in the water samples of Aalanthalai (2 1.0). To assess the quality of water and sediment, we calculated the polymer hazard index (PHI), pollutant load index (PLI) and potential ecological risk index (PERI). Because of the presence of high-hazard polymers like polyamide (PA) and polystyrene (PS), the study areas have high PHI values (>1000). According to PLI values, water and sediment samples from Tiruchendur and Manapad are highly contaminated with MPs (PLI: 6.98 to 13.85), whereas samples from Aalanthalai, Kayalpattinam and Roche Park are less contaminated (PLI: 1.87 to 3.43). The PERI values of sediment samples from Tiruchendur show the highest ecological risk (PERI: 416.783). On the basis of anthropogenic activities, centres with recreational activities have substantially greater MP concentrations than the fishing locations, and the sediment samples are considerably more polluted with MPs than the water samples taken from the same locations, according to PLI values.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Europe, P. (2020). Plastics–the facts 2020. PlasticEurope, 1, 1-64.

Gomiero, A., Strafella, P., & Fabi, G. (2018). From macroplastic to microplastic litter: occurrence, composition, source identification and interaction with aquatic organisms. Experiences from the Adriatic Sea. In Plastics in the Environment. Intech Open. https://doi.org/10.5772/intechopen.81534

Gewert, B., Plassmann, M. M., & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental science: processes & impacts, 17(9), 1513-1521. https://doi.org/10.1039/C5EM00207A

Strungaru, S.A., Jijie, R., Nicoara, M., Plavan, G., & Faggio, C. (2019). Micro-(nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology. TrAC trends in analytical chemistry, 110, 116-128. https://doi.org/10.1016/j.trac.2018.10.025

Guzzetti, E., Sureda, A., Tejada, S., & Faggio, C. (2018). Microplastic in marine organism: Environmental and toxicological effects. Environmental toxicology and pharmacology, 64, 164-171. https://doi.org/10.1016/j.etap.2018.10.009

A.M., Kubowicz, S., Beegle-Krause, C., Skancke, J., Nordam, T., Landsem, E., Throne-Holst, M., & Jahren, S. Microplastic in global and Norwegian Marine Environments: Distributions, Degradation Mechanisms and Transport, 2017. Vol. M-918.

Koehler, A., Anderson, A., Andrady, A., Arthur, C., Baker, J., Bouwman, H., Gall, S., Hidalgo-Ruz, V., Koehler, A., Law, K., Leslie, H., Kershaw, P., Pahl, S., Potemra, J., Ryan, P., Joon Shim, W., Thompson, R., Takada, H., Turra, A., & Wyles, K. (2015). Sources, fate and effects of microplastics in the marine environment: A global assessment.

Peixoto, D., Pinheiro, C., Amorim, J., Oliva-Teles, L., Guilhermino, L., & Vieira, M. N. (2019). Microplastic pollution in commercial salt for human consumption: A review. Estuarine, Coastal and Shelf Science, 219, 161-168. https://doi.org/10.1016/j.ecss.2019.02.018

Shim, W.J., Hong, S.H., & Eo, S. (2018). Marine microplastics: abundance, distribution, and composition. In Microplastic contamination in aquatic environments (pp. 1-26). Elsevier. https://doi.org/10.1016/B978-0-12-813747-5.00001-1.

Weinstein, J.E., Crocker, B.K., & Gray, A.D. (2016). From macroplastic to microplastic: Degradation of high‐density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environmental Toxicology and Chemistry, 35(7), 1632-1640. https://doi.org/10.1002/etc.3432

Moore, C.J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental research, 108(2), 131-139. https://doi.org/10.1016/j.envres.2008.07.025

do Sul, J. A. I., & Jang, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental pollution, 185, 352-364. https://doi.org/10.1016/j.envpol.2013.10.036

Ryan, P.G., Moore, C.J., Van Franeker, J.A., & Moloney, C.L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1999-2012. https://doi.org/10.1098/rstb.2008.0207

Gregory, M.R., Andrady, A.L. (2003). Plastics in the marine environment. Plastics and the Environment, 379-401. https://doi.org/10.1002/0471721557.ch10

Ng, K.L., & Obbard, J.P. (2006). Prevalence of microplastics in Singapore’s coastal marine environment. Marine pollution bulletin, 52(7), 761-767. https://doi.org/10.1016/j.marpolbul.2005.11.017

Barnes, D.K., Galgani, F., Thompson, R.C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the royal society B: biological sciences, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205

Andrady, A.L. (2011). Microplastics in the marine environment. Mar Pollute Bull 62 (8): 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

Welden, N.A., & Lusher, A. (2020). Microplastics: from origin to impacts. In Plastic waste and recycling (pp. 223-249). Academic Press. https://doi.org/10.1016/j.marpolbul.2011.05.030

Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L., Coppock, R., Sleight, V., & Thompson, R. C. (2014). The deep sea is a major sink for microplastic debris. Royal Society open science, 1(4), 140317.

Sathish, M.N., Jeyasanta, K.I., & Patterson, J. (2020). Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India. Environmental Pollution, 266, 115219. https://doi.org/10.1016/j.envpol.2020.115219.

De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K., & Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine pollution bulletin, 85(1), 146-155. https://doi.org/10.1016/j.marpolbul.2014.06.006

Li, J., Yang, D., Li, L., Jabeen, K., & Shi, H. (2015). Microplastics in commercial bivalves from China. Environmental pollution, 207, 190-195. https://doi.org/10.1016/j.envpol.2015.09.018

Lithner, D., Larsson, A., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the total environment, 409(18), 3309-3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

Xu, P., Peng, G., Su, L., Gao, Y., Gao, L., & Li, D. (2018). Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China. Marine pollution bulletin, 133, 647-654. https://doi.org/10.1016/j.marpolbul.2018.06.020

Tomlinson, S. (2014). The politics of race, class and special education: The selected works of Sally Tomlinson. Routledge. https://doi.org/10.4324/9781315794785

Peng, G., Xu, P., Zhu, B., Bai, M., & Li, D. (2018). Microplastics in freshwater river sediments in Shanghai, China: a case study of risk assessment in mega-cities. Environmental Pollution, 234, 448-456. https://doi.org/10.1016/j.envpol.2017.11.034

Amelineau, F., Bonnet, D., Heitz, O., Mortreux, V., Harding, A.M., Karnovsky, N., Walkusz, W., Fort, J., Gremillet, D. (2016). Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environmental Pollution, 219, 1131-1139. https://doi.org/10.1016/j.envpol.2016.09.017

Moore, C.J., Moore, S.L., Leecaster, M.K., & Weisberg, S.B. (2001). A comparison of plastic and plankton in the North Pacific central gyre. Marine pollution bulletin, 42(12), 1297-1300. https://doi.org/10.1016/S0025-326X(01)00114-X

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031 .

Grover, A., Gupta, A., Chandra, S., Kumari, A., & Khurana, S. M. (2015). Polythene and environment. International Journal of Environmental Sciences, 5(6), 1091-1105.

Botterell, Z.L., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R.C., & Lindeque, P.K. (2019). Bioavailability and effects of microplastics on marine zooplankton: A review. Environmental Pollution, 245, 98-110. https://doi.org/10.1016/j.envpol.2018.10.065

Li, J., Lusher, A., Rotchell, J.M., Company, S.D., Turra, A., Bråtec, I.L.N., Sun, C., Hossain, M.S., Li, Q., Kolandhasamy, P., Shi, H., (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environmental pollution, 244, 522-533. https://doi.org/10.1016/j.envpol.2018.10.032

Cho, Y., Shim, W.J., Jang, M., Han, G.M., & Hong, S.H. (2019). Abundance and characteristics of microplastics in market bivalves from South Korea. Environmental pollution, 245, 1107-1116. https://doi.org/10.1016/j.envpol.2018.10.032

Devriese, L. I., Van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L., Johan, R., & Vethaak, A. D. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine pollution bulletin, 98(1-2), 179-187. https://doi.org/10.1016/j.marpolbul.2015.06.051

Hall, N. M., Berry, K. L. E., Rintoul, L., & Hoogenboom, M. O. (2015). Microplastic ingestion by scleractinian corals. Marine Biology, 162(3), 725-732. https://doi.org/10.1016/j.marpolbul.2015.06.051

Ory, N., Chagnon, C., Felix, F., Fernández, C., Ferreira, J. L., Gallardo, C., & Thiel, M. (2018). Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Marine Pollution Bulletin, 127, 211-216. https://doi.org/10.1016/j.marpolbul.2017.12.016

Zhao, S., Zhu, L., & Li, D. (2016). Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Science of the Total Environment, 550, 1110-1115. https://doi.org/10.1016/j.scitotenv.2016.01.112

Crawford, C. B., & Quinn, B. (2016). Microplastic pollutants. Elsevier Limited.

Cole, M., Lindeque, P., Fileman, E., Halsband, C., & Galloway, T.S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental science & technology, 49(2), 1130-1137. https://doi.org/10.1021/es504525u

Savoca, S., Capillo, G., Mancuso, M., Bottari, T., Crupi, R., Branca, C., & Spanò, N. (2019). Microplastics occurrence in the Tyrrhenian waters and in the gastrointestinal tract of two congener species of seabreams. Environmental Toxicology and Pharmacology, 67, 35-41. https://doi.org/10.1016/j.etap.2019.01.011

Jang, M., Shim, W.J., Cho, Y., Han, G.M., Song, Y.K., Hong, S.H., 2020. A close relationship between microplastic contamination and coastal area use pattern. Water Res. 171, 115400. https://doi.org/10.1016/j.watres.2019.115400

Pan, Z., Liu, Q., Jiang, R., Li, W., Sun, X., Lin, H., & Huang, H. (2021). Microplastic pollution and ecological risk assessment in an estuarine environment: The Dongshan Bay of China. Chemosphere, 262, 127876. https://doi.org/10.1016/j.chemosphere.2020.127876

Li, R., Yu, L., Chai, M., Wu, H., & Zhu, X. (2020). The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. Science of the Total Environment, 708, 135025. https://doi.org/10.1016/j.scitotenv.2019.135025

Published
2022-12-27
How to Cite
(1)
V, G. E.; S, S.; Patterson, J. Quantification and Characterisation of Microplastic Pollution and Its Ecological Risk in the Coastline of Tuticorin, India. ijceae 2022, 4, 104-121.
Section
Articles



Views: Abstract : 82 | PDF : 87

Plum Analytics